有理数的乘方的教案1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对乘方的理解,更感受下面是小编为大家整理的有理数的乘方的教案3篇,供大家参考。
有理数的乘方的教案篇1
1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对乘方的理解,更感受到学习乘方概念的必要性和激发学习的兴趣.②教材中数的乘方概念是根据几何意义来定义的。(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的乘方的规律,如果直接给出乘方的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2.教学开放式的问题人手,培养学生的分类和发散思维的能力;把乘方分类表示出来并观察它们的特征,在复习乘方知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握乘方的概念。
3.本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
有理数的乘方的教案篇2
一、学习目标
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;
3、偶次幂的非负性的应用。
二、知识回顾
1、在2+ ×(-6)这个式子中,存在着3种运算。
2、上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解
1、偶次幂的非负性
若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2、有理数的混合运算顺序
①先乘方,再乘除,最后加减;
②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究
1、有理数混合运算的顺序意识
【例1】计算:-1-3×(-2)3+(-6)÷
总结:做有理数的混合运算时,应注意以下运算顺序:
先乘方,再乘除,最后加减;
同级运算,从左到右进行;
如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +
2、有理数混合运算的转化意识
【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25
总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:
3、有理数混合运算的符号意识
【例3】计算:-42-5×(-2)× -(-2)3
总结:
在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
练3计算:
4、有理数混合运算的简算意识
【例4】计算:[1 -( )× ]÷5
总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率。
练4计算:[2 -( )×2]÷
5、利用数的乘方找规律
【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门。
题中的这组数据是按什么规律排列的?
请你按这种规律写出第七个数据。
总结:
这是一道规律探索题。规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论。
探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑。
练5
五、课后小测一、选择题
1、下列各式的结果中,最大的为( )。
A. B.
C. D.
2.32015的个位数字是( )。
A.3 B.9 C.7D.1
3、已知,那么(a+b)20**的值是( )。
A.-1 B.1 C.-32015 D.32015
二、填空题
4.a与b互为相反数,c与d互为倒数,x的绝对值为2,则x2+(a+b)20**+(-cd)20**=________.
三、解答题
5、计算:
(1) ;
(2) 。
6、计算:
(1) ;
(2) 。
7、计算:
(1) ;
(2) 。
8、计算:
(1) ;
(2) 。
9、已知与互为相反数,求:
(1) ;(2) 。
典例探究答案:
【例1】【解析】原式=-1-3×(-8)+(-6)÷
=-1-(-24)+(-54)
=-1+24-54
=-31
练1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3
【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-
=-8÷ +(- )-
=-8× +(- )-
=-
练2【解析】原式=9×( )-16×(-2)+ × = +32+2=
【例3】【解析】原式=-16+1-(-8)
=-16+1+8
=-7
练3【解析】原式=-4-(-27)×1-(-1)
=-4+27+1
=24
【例4】【解析】原式=[ -( )×(-64)]÷5
=[ -( )]÷5
=( -20)×
= × -20×
= -4=-3
练4【解析】原式=[ -( )]÷
=( - )×8
=19-2- +3
=
【例5】【解析】(1)观察这组数据,发现分子都是某一个数的平方,分别为32,42,52,62……分母和分子相差4,由此发现排列的规律。即:第n个数可以表示为。
(2)第七个数据为。
练5【解析】n+1/n+2=(n+1)2/n+3
课后小测答案:
一、选择题
1.C
2.C
3.A
二、填空题
4.3
三、解答题
5、(1)原式=-16-16-1-1=-34;
(2)原式= =-30.
6、(1)-27;(2)31.
7、(1)原式=16×(-4)+5=-64+5=-59;
(2)原式= =0.
8、(1)原式=-64-16-9×( )=-64-16+7=-73;
(2)原式= 。
9、解:由题意,得。
又因为,,
所以,,得a=2,b=-1.
所以(1) ;
(2) 。
有理数的乘方的教案篇3
一、学习目标
1.能确定有理数加、减、乘、除、乘方混合运算的顺序;
2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;
3.偶次幂的非负性的应用。
二、知识回顾
1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解
1.偶次幂的非负性
若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序
①先乘方,再乘除,最后加减;
②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究
1.有理数混合运算的顺序意识
【例1】计算:-1-3×(-2)3+(-6)÷
总结:做有理数的混合运算时,应注意以下运算顺序:
先乘方,再乘除,最后加减;
同级运算,从左到右进行;
如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +
2.有理数混合运算的转化意识
【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25
总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:
3.有理数混合运算的符号意识
【例3】计算:-42-5×(-2)× -(-2)3
总结:
在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
练3计算:
4.有理数混合运算的简算意识
【例4】计算:[1 -( )× ]÷5
总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率。
练4计算:[2 -( )×2]÷
5.利用数的乘方找规律
【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门。
题中的这组数据是按什么规律排列的?
请你按这种规律写出第七个数据。
总结:
这是一道规律探索题。规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论。
探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑。
练5
五、课后小测一、选择题
1.下列各式的结果中,最大的为( ).
A. B.
C. D.
2.32015的个位数字是( ).
A.3 B.9 C.7D.1
3.已知,那么(a+b)20**的值是( ).
A.-1 B.1 C.-32015 D.32015
二、填空题
4.a与b互为相反数,c与d互为倒数,x的绝对值为2,则x2+(a+b)20**+(-cd)20**=________.
三、解答题
5.计算:
(1) ;
(2) .
6.计算:
(1) ;
(2) .
7.计算:
(1) ;
(2) .
8.计算:
(1) ;
(2) .
9.已知与互为相反数,求:
(1) ;(2) .
典例探究答案:
【例1】【解析】原式=-1-3×(-8)+(-6)÷
=-1-(-24)+(-54)
=-1+24-54
=-31
练1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3
【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-
=-8÷ +(- )-
=-8× +(- )-
=-
练2【解析】原式=9×( )-16×(-2)+ × = +32+2=
【例3】【解析】原式=-16+1-(-8)
=-16+1+8
=-7
练3【解析】原式=-4-(-27)×1-(-1)
=-4+27+1
=24
【例4】【解析】原式=[ -( )×(-64)]÷5
=[ -( )]÷5
=( -20)×
= × -20×
= -4=-3
练4【解析】原式=[ -( )]÷
=( - )×8
=19-2- +3
=
【例5】【解析】(1)观察这组数据,发现分子都是某一个数的平方,分别为32,42,52,62……分母和分子相差4,由此发现排列的规律。即:第n个数可以表示为。
(2)第七个数据为。
练5【解析】n+1/n+2=(n+1)2/n+3
课后小测答案:
一、选择题
1.C
2.C
3.A
二、填空题
4.3
三、解答题
5.(1)原式=-16-16-1-1=-34;
(2)原式= =-30.
6.(1)-27;(2)31.
7.(1)原式=16×(-4)+5=-64+5=-59;
(2)原式= =0.
8.(1)原式=-64-16-9×( )=-64-16+7=-73;
(2)原式= .
9.解:由题意,得。
又因为,,
所以,,得a=2,b=-1.
所以(1) ;
(2) .
推荐访问:乘方 有理数 教案 有理数的乘方的教案一课时 有理数的乘方的教案ppt 有理数的乘方的教案第二课时 有理数乘方的教案设计 有理数乘方的教案的教学反思 有理数的乘方优秀教案 有理数的乘方教学实录 有理数的乘方的教学目标 有理数的乘方教学内容分析